Article ID Journal Published Year Pages File Type
5486922 High Energy Density Physics 2017 5 Pages PDF
Abstract
This paper presents a proposed experimental technique for investigating the impact of chemical interactions in warm dense liquid mixtures. It uses experimental equation of state (EOS) measurements of warm dense liquid mixtures with different compositions to determine the deviation from the linear mixing model. Statistical mechanics is used to derive the EOS of a mixture with a constant pressure linear mixing term (Amagat's rule) and an interspecies interaction term. A ratio between the particle density of two different compositions of mixtures, K(P, T)i: ii, is defined. By comparing this ratio for a range of mixtures, the impact of interspecies interactions can be studied. Hydrodynamic simulations of mixtures with different carbon/hydrogen ratios are used to demonstrate the application of this proposed technique to multiple shock and ramp compression experiments. The limit of the pressure correction that can be measured due to interspecies interactions using this methodology is determined by the uncertainty in the density measurement.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
,