Article ID Journal Published Year Pages File Type
5487036 Icarus 2017 29 Pages PDF
Abstract
The majority of impact craters have circular outlines and axially symmetric morphologies. Deviation from crater circularity is caused by either target heterogeneity, a very oblique impact incidence, post-impact deformation, or by topography. Here, we investigate the effect of topography on crater formation and systematically study impact cratering processes on inclined hillsides up to 25° slope utilizing analogue experiments. A spring-driven air gun mounted in a vertical position shoots into three different types of granular bulk solids (two sorts of glass beads, quartz sand) to emulate impact cratering on slopes. In all, 170 experiments were conducted. The transient crater develops roughly symmetrically perpendicular to the slope plane, resulting in higher ejection angles uphill than downhill when measured with respect to a horizontal plane. Craters become increasingly elliptical with increasing slope angle. At slope angles close to angle of repose of the respective bulk solids, aspect ratios of the craters reach ∼1.7. Uphill-downhill cross sections become increasingly asymmetric, the depth-diameter ratio of the craters decreases, and the deepest point shifts downhill with increasing slope angle. Mass wasting is initiated both in the uphill and downhill sectors of the crater rim. For steep slopes the landslides that emanate from the uphill rim can overshoot the crater cavity and superpose the downhill crater rim in a narrow tongue. Mass wasting initiated at the downhill sector forms broader and shallower tongues and is triggered by the deposition of ejecta on the inclined slope. Our experiments help to explain asymmetric crater morphologies observed on asteroids such as Ceres, Vesta, Lutetia, and also on Mars.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,