Article ID Journal Published Year Pages File Type
5487150 Icarus 2017 26 Pages PDF
Abstract
Recent geodetic measurements for Enceladus suggest a global subsurface ocean that is thicker beneath the south pole. In order to maintain such an ocean, viscous relaxation of topography at the base of the ice shell and melting of ice need to be balanced. In this study, we investigate the interior thermal state that can lead to the relaxation timescale being comparable to the melting timescale. Our results indicate that a basal heat flux about ten times higher than that due to radiogenic heating, or an ice shell tidal heating rate about ten times higher than the conventional estimate of 1.1 GW is necessary if the ice shell is in thermal equilibrium. These requirements are concordant with recent astrometric studies.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,