Article ID Journal Published Year Pages File Type
5487262 Icarus 2017 136 Pages PDF
Abstract
The asymmetric nearside-farside distribution of mare basalt deposits is most plausibly explained by crustal thickness differences; intrusion is favored on the thicker farside crust and extrusion is favored on the thinner nearside crust. Second-order effects include regional and global thermal structure (areal variations in lithospheric thickness as a function of time) and broad geochemical anomalies (the Procellarum-KREEP Terrain). Differences in mare basalt titanium content as a function of space and time are testimony to a laterally and vertically heterogeneous mantle source region. The rapidly decreasing integrated flux of mare basalts is a result of the thermal evolution of the Moon; continued cooling decreased diapiric rise and mantle melting, thickened the lithosphere, and caused the global state of stress to be increasingly contractional, all factors progressively inhibiting the generation, ascent and eruption of basaltic magma. Late-stage volcanic eruptions are typically widely separated in time and characterized by high-volume, high-effusion rate eruptions producing extensive volume-limited flows, a predictable characteristic of deep source regions below a thick lithosphere late in lunar history. This improved paradigm for the generation, ascent, intrusion and eruption of basaltic magma provides the basis for the broader interpretation of the lunar volcanic record in terms of variations in eruption conditions in space and time, and their relation to mantle heterogeneity and a more detailed understanding of lunar thermal evolution.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
, ,