Article ID Journal Published Year Pages File Type
5487436 Icarus 2017 12 Pages PDF
Abstract
The Viking missions to Mars found that 15N/14N is enhanced by a factor of 1.62 compared to Earth and it was suggested that the cause was dissociative recombination (DR) of N2+. The high kinetic energy imparted to N in DR drives atmospheric escape. More recent models of the Martian ionosphere show that much of the N2+ is vibrationally excited. If DR of vibrationally excited 29N2+ is important, the energetics are such that the isotope enhancement would be greatly reduced. Here I show that at the Mars exobase electron temperature and density, the excited vibrational levels of 29N2+ radiate before they can recombine. The isotope enhancement arising from DR is due entirely to DR of 28N2+ with a small contribution to 14N escape arising from DR of the ground vibrational level of 29N2+.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Space and Planetary Science
Authors
,