Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5487570 | Journal of Atmospheric and Solar-Terrestrial Physics | 2017 | 6 Pages |
Abstract
Noctilucent clouds (NLCs) are optically thin ice clouds occurring near the polar summer mesopause. NLCs are a highly variable phenomenon subject to different sources of variability. Here we report on a poorly understood mechanism affecting NLCs, i.e., the lunar gravitational tide. We extract remarkably clear and statistically highly significant lunar semidiurnal tidal signatures in NLC occurrence frequency, NLC albedo and NLC ice water content from observations with the Solar Backscatter Ultraviolet (SBUV) satellite instruments using the superposed epoch analysis method applied to a data set covering more than 3 decades. The lunar semidiurnal tide is identified in NLC measurements in both hemispheres. In addition, lunar semidiurnal tidal signatures in polar summer mesopause temperature were extracted from space borne observations with the Microwave Limb Sounder (MLS) and the phases of the lunar tidal signatures in NLC parameters and temperature are demonstrated to be consistent. To our best knowledge these results constitute the first identification of the lunar tide in non-visual NLC observations.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geophysics
Authors
Christian von Savigny, Matthew T. DeLand, Michael J. Schwartz,