Article ID Journal Published Year Pages File Type
5487737 New Astronomy 2017 18 Pages PDF
Abstract
The aim of this work is to investigate the effect of the presence of a magnetic Prandtl number on the structure of an accretion flow with a bipolar outflow by focusing on the density structure. Two cold and hot classes are considered for accretion flows. According to the self-similar assumptions in the radial direction and boundary conditions as well, we solve the MHD equations along the θ-direction to obtain the density structure. In addition, we consider the results in two gas-pressure-dominated and radiation-pressure-dominated regions. The obtained results show that the existence of a magnetic prandtl number may lead to bump formation in hot accretion flows, which may have consequences for planet formation. Furthermore, some discontinuations in the density structure are seen at some regions resulting in the production of a gap in the case of cold accretion flows. The results of this work may be useful in the consideration of the Rossby wave instability in both classes of accretion flows.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Astronomy and Astrophysics
Authors
,