Article ID Journal Published Year Pages File Type
5488073 Planetary and Space Science 2016 16 Pages PDF
Abstract

•First results from the NEAR GRS orbital investigation.•Eros' composition matches ordinary, enstatite, and low-H carbonaceous chondrites.•Additional data restricts the match to L and LL chondrites.•Lessons for future gamma-ray spectrometer investigations are discussed.

A primary goal of the Near-Earth Asteroid Rendezvous (NEAR) mission was to compare the elemental composition of the S-type asteroid 433 Eros to the chemical compositions of meteorites, with the specific objective of testing the hypothesis that the S-type asteroids are the source of the ordinary chondrite (OC) meteorites. To that end, NEAR carried an X-ray and Gamma-ray Spectrometer (XGRS) to measure the elemental composition of Eros from orbit. To date, no Eros-originating signal had been reported in GRS orbital measurements, a consequence of NEAR's high orbital altitudes about Eros. A reanalysis of the NEAR GRS orbital dataset, particularly data collected during a series of low-altitude flyovers, has finally revealed the first positively identified gamma-ray signals from Eros. This dataset, which amounts to just ~10 h of data collection, was used to produce the first GRS-derived global elemental composition values. Results include the first absolute concentrations of Fe and Th, and the first global K concentration. The data confirm prior conclusions that the elemental composition of Eros' surface is inconsistent with achondritic and volatile-rich carbonaceous chondritic compositions. In contrast, ordinary chondrites, volatile-poor carbonaceous chondrites, and enstatite chondrites have compositions that are consistent with Eros' gamma-ray emissions. When placed in the context of other gamma-ray spectrometer investigations, this analysis indicates that successful gamma-ray spectroscopy investigations require extended periods of time (≥10 days) at orbital altitudes less than or equal to the radius of the target body.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geophysics
Authors
,