Article ID Journal Published Year Pages File Type
5488474 Infrared Physics & Technology 2017 18 Pages PDF
Abstract
The transformation behavior of free-volume defect in (80GeS2-20Ga2S3)100-x (CsI)x (x = 0, 5, 10, 15 mol%) chalcogenide glasses was studied by employing positron annihilation spectroscopic technique, which could reveal valuable information for in-depth understanding of nano-structural defects in glassy matrix. The results indicate that the structural changes caused by CsI additives can be adequately described by positron trapping modes determined with two-state model. The initial addition of CsI (x = 5 mol%) led to a void contraction, whereas, the void agglomeration occurred with the increase of CsI and the free-volume defects of the glasses were obviously reduced. The atomic density ρ is inversely proportional to the number of these defects. Meanwhile, the UV cut-off edge shifts toward short-wavelength with increasing of CsI. This study provides the valuable information of defects evolution in GeS2-Ga2S3-CsI glasses.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Atomic and Molecular Physics, and Optics
Authors
, , , , , , , , , , , ,