Article ID Journal Published Year Pages File Type
5489130 Journal of Crystal Growth 2017 13 Pages PDF
Abstract
DNA nanostructures are created by exploiting the high fidelity base-pairing interactions of double-stranded branched DNA molecules. These structures present a convenient medium for the self-assembly of macroscopic 3D crystals. In some self-assemblies in this system, crystals can be formed by lowering the temperature, and they can be dissolved by raising it. The ability to monitor the formation and melting of these crystals yields information that can be used to monitor crystal formation and growth. Here, we describe the development of an inexpensive tool that enables direct observation of the crystal growth process as a function of both time and temperature. Using the hanging-drop crystallization of the well-characterized 2-turn DNA tensegrity triangle motif for our model system, its response to temperature has been characterized visually.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , ,