Article ID Journal Published Year Pages File Type
5489169 Journal of Crystal Growth 2017 11 Pages PDF
Abstract
We present an initial study of the influence of the growth parameters on the surface morphology and on the interface quality of homoepitaxial GaP(1 1 1) and heteroepitaxial GaP/AlGaP(1 1 1) grown on GaP(1 1 1)B substrates using Gas-Source Molecular Beam Epitaxy (GSMBE). Three different surface reconstructions are identified in the RHEED patterns during the growth runs. The Root Mean Square (RMS) surface roughness measured post-growth by AFM ranges from 3 to 10 nm over 10 × 10 µm2 areas, for a film thickness of 100-600 nm. The results of 2θ-ω XRD scans on (1 1 1) and (3 1 1) planes reveal a stacking disorder in the AlGaP layer and further XRD phi-scan measurements on GaP (3 1 1) show strong peaks with 3-fold rotational symmetry and additional of 3-fold weak peaks indicating only a negligible fraction of the twinned crystal orientation in the substrate. TEM images of these samples show a smooth interface between the AlGaP layer and GaP substrate, and reveal the presence of a high density of extended defects such as stacking faults, twinning and dislocations lines in AlGaP layer whereas the GaP layer appears as pure Zinc-Blende. Further TEM analysis reveals composition and local strain variations for GaP/AlGaP samples associated with an undulated surface.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,