Article ID Journal Published Year Pages File Type
5489525 Journal of Crystal Growth 2017 25 Pages PDF
Abstract
The emergence of the high-performance multi-crystalline silicon (HP mc-Si) in 2011 has made a significant impact to photovoltaic industry. In addition to the much better ingot uniformity and production yield, HP mc-Si also has better material quality for solar cells. As a result, the average efficiency of solar cells made from HP mc-Si in production increased from 16.6% in 2011 to 18.5% or beyond in 2016. More importantly, the efficiency distribution became much narrower; the difference from various producers became smaller as well. Unlike the conventional way of having large grains and electrically-inactive twin boundaries, the crystal growth of HP mc-Si by directional solidification is initiated from uniform small grains having a high fraction of random grain boundaries. The grains developed from such grain structures significantly relax thermal stress and suppress the massive generation and propagation of dislocation clusters. The gettering efficacy of HP mc-Si is also superior to the conventional one. Nowadays, most of commercial mc-Si is grown by this approach, which could be implemented by either seeded with silicon particles or controlled nucleation, e.g., using nucleation agent coating. The future improvement of this technology will also be discussed in this review.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , ,