Article ID Journal Published Year Pages File Type
5489581 Journal of Crystal Growth 2017 19 Pages PDF
Abstract
We developed an electrostatic energy of transfer (EET) analysis applicable to periodic boundary condition, including a nonrectangular unit cell. It was applied to monoclinic ribonuclease A crystallized with ethanol as a precipitant. Macrobond analysis was also carried out. Owing to the low ionic strength of the solvent region, atomic EET values were non-negligible even at long-distance points. Most of the molecular EET values-defined as the individual contribution of each surrounding molecule-were positive. The inclusion of the molecular EET values of hydration water molecules reduced the repulsive force, and the evaluation of hydration effects in protein crystals was found to be imperative.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , ,