Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5489783 | Journal of Crystal Growth | 2017 | 11 Pages |
Abstract
Rapid thermal annealing (RTA) has been performed on InGaAsP solar cells with the bandgap energy of 1 eV grown by molecular beam epitaxy. With the employment of RTA under an optimized condition, the open voltage was increased from 0.45 to 0.5 V and the photoelectric conversion efficiency was increased from 11.87-13.2%, respectively, which was attributed to the crystal quality improvement of p-type InGaAsP and therefore a reduced recombination current inside depletion region. The integral photoluminescence (PL) intensity of p-type InGaAsP increased to 166 times after annealing at 800 °C and its PL decay time increased by one order of magnitude. While the changes of nominally undoped and n-doped InGaAsP were negligible. The different behaviors of the effect of RTA on InGaAsP of different doping types were attributed to the highly mobile “activator” - beryllium (Be) atom in p-type InGaAsP.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Lian Ji, Ming Tan, Chao Ding, Kazuki Honda, Ryo Harasawa, Yuya Yasue, Yuanyuan Wu, Pan Dai, Atsushi Tackeuchi, Lifeng Bian, Shulong Lu, Hui Yang,