Article ID Journal Published Year Pages File Type
5489866 Journal of Crystal Growth 2016 7 Pages PDF
Abstract
A zone refining processing was utilized to purify tellurium (Te) metal using a locally melted zone caused by high-frequency induction heating. The travel rate of the molten zone was set as a parameter. The purification efficiency for each impurity (Bi, Sb, Sn, and Se) in the tellurium sample was analyzed by inductively coupled plasma optical emission spectroscopy (ICP-OES), and the experimental results were compared with the theoretical results furnished by the proposed model to validate its predictions. The experimental results indicated that a lower travel rate of the molten zone and repetition of passes were more efficient for purification. The effective distribution coefficient keff and the keff values of bismuth, antimony, tin, and selenium were 0.5, 0.35, 0.22, and 0.58, respectively. These elements were effective for the purification of Te by zone refining. The obtained distribution coefficient keff values of impurities can be used as standards for the purification of Te by zone refining. The Vickers hardness was measured, and a correlation between hardness and concentration was observed, with an average Vickers hardness was 62 Hv.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,