Article ID Journal Published Year Pages File Type
5490016 Journal of Magnetism and Magnetic Materials 2017 9 Pages PDF
Abstract
The purpose of this study is to theoretically examine nanoparticle shapes behavior on mass and heat flow of ferrofluid over a rotating disk with the presence of low oscillating magnetic field. Ferrofluid is prepared by water and iron nanoparticles of three different shapes like sphere, oblate ellipsoid and prolate ellipsoid. The problem has been formulated by employing the controllable force into the fundamental hydrodynamic equations and its effect along with particle shape factor on physical properties of fluid is discussed. These equations are converted into a system of ordinary differential equations by employing appropriate similarity approach and then solved by HAM based Bvph2 package. Effects of particle shape, particle volume fraction and magnetization parameter on axial, radial and tangential velocities along with temperature profile are demonstrated through graphically. The results for local Nusselt number are calculated and analyzed and the path for enhancement in heat transfer is also proposed.
Keywords
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , ,