Article ID Journal Published Year Pages File Type
5490152 Journal of Magnetism and Magnetic Materials 2018 10 Pages PDF
Abstract
The structural and magnetic properties of Zn, Co and Zr cations doped barium hexaferrite [Ba(Znx/2Cox/2)xZrxFe(12−2x)O19] nanoparticles synthesized by sol-gel method have been investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were employed to investigate the physico-chemical properties of the obtained ferrite samples. XRD studies reveal that the magnetoplumbite structure for all sample (up to x = 0.8) have been formed and the crystallite size of nanoparticles lies in the range of 34-46 nm. At higher dopant concentration, other impurities (α-Fe2O3 and BaFe2O4 etc.) have been observed. Magnetic studies indicate that site occupancy and nature of dopant ions greatly affect the behavior of magnetic properties. The results of VSM and LCR analysis show that magnetic and electrical parameters vary with an increase in dopant concentration. The results of BET surface area of samples indicate that these types of materials could be used for catalytic properties. Dielectric constant, dielectric loss tangent and A.C. conductivity weremeasured using impedance analyzer over wide frequency range 20 Hz-120 MHz. All the three parameters increase significantly with increase in doping. Increase in dielectric constant proposes these materials for fabrication of microwave devices, while increase in dielectric loss tangent proposes these for applications such as attenuator, absorber etc.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , ,