Article ID Journal Published Year Pages File Type
5490698 Journal of Magnetism and Magnetic Materials 2017 5 Pages PDF
Abstract
First order antiferromagnetic to ferromagnetic transition and path dependent magnetic states in La1−xNdxFe11.5Al1.5 for x∼0.1 are studied at low temperatures via powder x-ray diffraction, magnetization, and specific heat measurements. X-ray diffraction measurements suggest that around 8% of high temperature antiferromagnetic phase is converted to ferromagnetic phase at low temperatures in zero field cooling. A systematic study of temperature and magnetic field dependent magnetization measurements show a non-monotonic variation of upper critical field and re-entrant antiferromagnetic-ferromagnetic-antiferromagnetic transition while warming at an applied magnetic field under zero-field-cooled condition. This has been interpreted in the framework of kinetic arrest model for first order magnetic transition. It is also found that the antiferromagnetic phase is in the non-equilibrium state and behaves as a glass-like magnetic state at low temperatures. The specific heat in field-temperature space is studied and found to have a lower electronic contribution for the non-equilibrium antiferromagnetic state, compared to the equilibrium ferromagnetic state in this compound.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, ,