Article ID Journal Published Year Pages File Type
5490703 Journal of Magnetism and Magnetic Materials 2017 24 Pages PDF
Abstract
The lightly doped BaFe12−xDxO19 (D=Al3+, In3+; x=0.1 and 0.3) polycrystalline hexaferrite samples have been investigated by powder neutron diffractometry as well as by vibration sample magnetometry in a wide temperature range from 4 K up to 740 K and in magnetic field up to 14 T to establish the nature of Fe3+(Al3+, In3+) - O2- - Fe3+(Al3+, In3+) indirect exchange interactions. The crystal structure features such as the ionic coordinates and lattice parameters have been defined and Rietveld refined. The Invar effect has been observed in low temperature range below 150 K. It was explained by the thermal oscillation anharmonicity of ions. It is established that the ferrimagnet-paramagnet phase transition is a standard second-order one. From the macroscopic magnetization measurement the Curie temperature and ordered magnetic moment per nominal iron ion are obtained. From the microscopic diffraction measurement the magnetic moments at all the nonequivalent ionic positions and total magnetic moment per iron ion have been obtained at different temperatures down to 4 K. The light diamagnetic doping mechanism and magnetic structure model are proposed. The effect of light diamagnetic doping on nature of Fe3+(Al3+, In3+) - O2- - Fe3+(Al3+, In3+) indirect exchange interactions with temperature increase is discussed.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , , ,