Article ID Journal Published Year Pages File Type
5490838 Journal of Magnetism and Magnetic Materials 2017 9 Pages PDF
Abstract
Single phase ε-Mn4N thin and ultrathin films are grown on MgO(001) using molecular beam epitaxy. Reflection high-energy electron diffraction and out-of-plane X-ray diffraction measurements are taken for each sample in order to determine the in- and out-of-plane strain for each sample. Vibrating sample magnetometry and superconducting quantum interference device measurements, which are performed on the thin and ultrathin films respectively, are used to plot the magnetization of each sample versus both in- and out-of-planeH→-fields and to determine the magnitude of perpendicular magnetic anisotropy in these films. Three significant components of perpendicular magnetic anisotropy are observed in these films and are attributed to sample strain (1 component) and shape (2 components). Among these components, the most significant component 0.8-4.9Mergcm3 is identified as a second term of shape anisotropy, which possesses a negative linear relationship with sample thickness over the range from 9 nm to 310 nm. Atomic (magnetic) force microscopy measurements show the presence of a surface localized magnetic polarization (22-82%), which increases with decreasing thickness, when the net magnetizations of the films are zero. The second term of shape anisotropy as well as the surface localized polarization, which each depend on sample thickness, are each regarded as a consequence of Ising domains overlapping out-of-plane in these films.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , , ,