Article ID Journal Published Year Pages File Type
5491102 Journal of Magnetism and Magnetic Materials 2017 18 Pages PDF
Abstract
Composite materials of Cu0.6Zn0.4Fe2O4 (CZF) and barium titanate (BT) with different concentrations were prepared by high energy ball milling method. The composite samples of CZF and BT were studied using Infrared, ESR and positron annihilation Doppler broadening (PADB) spectroscopy techniques as well as thermo-electric power measurements. The results confirm formation of the composite, and presence of two ferrimagnetic and ferroelectric phases, simultaneously. In addition, Fe-O bond for both tetrahedral and octahedral sites, population and distribution of cations at A and B sites are varied with BT content. The values of resonance field, line width of ESR spectrum and charge carrier concentration increase by increasing BT content. The value of the g factor for our samples with low BT content is greater than g-factor value of the isolated free electron. On the contrary, the g-factor values for samples with high BT content are smaller than the free isolated electron. PADB line-shape S-parameter suggests that there are increases of the density of the delocalized electrons, defect size and concentration caused by highly adding BT phase. In addition, PADB results confirm the homogeneity of composite phases and same structure of defects in BT-CZF composite samples.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , ,