Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5491110 | Journal of Magnetism and Magnetic Materials | 2017 | 27 Pages |
Abstract
In current work, Nd15âxDyxFe77.5B7.5 (at%) nanoparticles with different Dy-content (x=0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0) were synthesized by sol-gel method followed by a reduction-diffusion process. The effects of Dy on the magnetic properties and the relations between the microstructure and the coercivity of Dy-substituted Nd-Fe-B nanoparticles have been studied. The coercivity of Nd-Fe-B nanoparticles with the addition of Dy first increase, reaches a maximum, and then starts to decrease. The coercivity of Dy-substituted Nd-Fe-B nanoparticle synthesized by sol-gel method increased from 938.9 to 1663.9 kA/m while the remanence decreased slightly from 1.16 to 1.06 T. The results show that with an increase in Dy content the variation of maximum energy product ((BH)max), lowest-order uniaxial magnetocrystalline anisotropy constant (Ku1), and Curie temperature (Tc) had a trend as same as the coercivity. The Henkel plot showed that the existence of exchange coupling interaction between grains, and the exchange coupling interactions increased with increasing x from 0.0 to 2.0 and then decrease with further increasing xâ¥2.5. The optimum magnetic properties of Nd-Fe-B nanoparticles with (BH)max =40.38 MGOe, Hc=1663.9 kA/m, Br=1.08 T were obtained by substituted 2.0 at% Dy. The effects of increasing temperature on magnetic properties of Dy-substituted Nd-Fe-B nanoparticle magnets with 2.0 at% Dy was investigated. The reduced spin-reorientation temperature was obtained for Dy-substituted Nd-Fe-B nanoparticles with 2.0 at% Dy. Below 100 K a spin-reorientation transition was takes place. The temperature coefficient of coercivity (β) was â0.36, â0.46, â0.41, â0.34, â0.29, â0.24, â0.25%/°C at different temperature 50, 100, 150, 200, 250, 300, 350 °C, respectively. Mössbauer spectroscopy was applied to study the composition and properties of Dy-substituted Nd-Fe-B magnet. Microstructure analysis showed a homogeneous distribution of Dy in produced samples. The possible reason for observed magnetic behavior is improving the intrinsic material parameter and optimizing the microstructure by a uniform enhancement of magnetocrystalline anisotropy by formation the nanocrystalline compound (Nd,Dy)2Fe14B.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Hamed Rahimi, Ali Ghasemi, Reza Mozaffarinia, Majid Tavoosi,