Article ID Journal Published Year Pages File Type
5491295 Journal of Magnetism and Magnetic Materials 2017 5 Pages PDF
Abstract
In this paper, we investigate the responsivities and output voltage noise power spectral densities of magnetoelectric (ME) laminate sensors, consisting of length magnetized Terfenol-D alloys and transverse/width poled Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMNT) crystals (i.e. L-T mode and L-W mode respectively), which are directly integrated with custom-build low noise charge amplifier circuits. Both the theoretical analyses and experimental results prove that the L-W mode sensor with the optimized polarized direction of the PMNT plate possesses lower magnetic detection limit at the interested high frequency range of 10 kHz≤f≤50 kHz. The equivalent magnetic noise (EMN) of the L-W mode sensor is 0.78 pT/Hz1/2 at 30 kHz, which is about 1.7 times lower than the 1.35 pT/Hz1/2 for conventional L-T mode sensor. Furthermore, an effective method of using operational amplifiers with low equivalent input noise voltage and employing ME laminate composites with high voltage coefficient to reduce the EMNs of the ME laminate sensors at high frequency range has been established.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,