Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5491304 | Journal of Magnetism and Magnetic Materials | 2017 | 7 Pages |
Abstract
Soft magnetic composites (SMCs) comprised of ferrite-coated ferrous powder permit isotropic magnetic flux capabilities, lower core losses, and complex designs through the use of traditional powder metallurgy techniques. Current coating materials and methods are vastly limited by the nonmagnetic properties of organic and some inorganic coatings and their inability to withstand high heat treatments for proper stress relief of core powder after compaction. Ferrite-based coatings are ferrimagnetic, highly resistive, and possess high melting temperatures, thus providing adequate electrical barriers between metallic particles. In this work, iron powder was coated with Fe3O4 particles via mechanical milling, then compacted and cured in an inert gas environment. We find density and coercivity to improve with increasing temperatures; however, core loss greatly increases, which is attributed to the formation of a more conductive iron-oxide phase and less resistive Fe volume. Our work begins to exemplify the unique qualities and potential for ferrite-based coatings using traditional powder metallurgy techniques and higher curing temperatures for electromagnetic devices.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Condensed Matter Physics
Authors
Katie Jo Sunday, Francis G. Hanejko, Mitra L. Taheri,