Article ID Journal Published Year Pages File Type
5491970 Physica B: Condensed Matter 2017 27 Pages PDF
Abstract
The two-band model effective mass approximation has been adopted to explain the energy spectra in type-I CdSe core-only and type-II CdSe/CdTe core/shell quantum dots (QDs). As optical properties, the emission wavelength, the electron-hole overlap integral and the radiative recombination lifetime have been investigated. The simulated emission spectra are in good agreement with available experimental results for both core-only and core/shell QDs. The radiative recombination lifetime (τrad) has been investigated in different carrier localization regimes and compared to that corresponding to core-only QDs. We have found a sudden increase in τrad at around r1~1.1nm suggesting the transition of the heterostructure from the quasi-type-II to the type-II regime. A monotonic increase in τrad with the core and shell sizes (geometric parameters) was observed. Also found is the possibility of increasing τrad over two orders of magnitude with a suitable change in the geometric parameters. The long radiative lifetime produced by increasing the geometric parameters is found due to spatial separation of the carriers, which makes the type-II core/shell QDs made from large core and shell sizes promising for photovoltaic applications.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , ,