Article ID Journal Published Year Pages File Type
5492057 Physica B: Condensed Matter 2017 7 Pages PDF
Abstract
An analytical model is developed to describe the phenomenon of giant photoexpansion in chalcogenide glasses. The proposed micro-mechanical model is based on the description of photoexpansion as a new type of eigenstrain, i.e. a deformation analogous to thermal expansion induced without external forces. In this framework, it is the viscoelastic flow induced by photofluidity which enable the conversion of the self-equilibrated stress into giant photoexpansion. This simple approach yields good fits to experimental data and demonstrates, for the first time, that the photoinduced viscous flow actually enhances the giant photoexpansion or the giant photocontraction as it has been suggested in the literature. Moreover, it highlights that the shear relaxation time due to photofluidity controls the expansion kinetic. This model is the first step towards describing giant photoexpansion from the point of view of mechanics and it provides the framework for investigating this phenomenon via numerical simulations.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Condensed Matter Physics
Authors
, , , , , , , ,