Article ID Journal Published Year Pages File Type
5492694 Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2017 7 Pages PDF
Abstract
A combination of Finite Difference Time Domain (FDTD) and Monte Carlo (MC) methods is proposed for simulation and analysis of ZnO microscintillators grown in polycarbonate membrane. A planar 10 keV X-ray source irradiating the detector is simulated by MC method, which provides the amount of absorbed X-ray energy in the assembly. The transport of generated UV scintillation light and its propagation in the detector was studied by the FDTD method. Detector responses to different probable scintillation sites and under different energies of X-ray source from 10 to 25 keV are reported. Finally, the tapered geometry for the scintillators is proposed, which shows enhanced spatial resolution in comparison to cylindrical geometry for imaging applications.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Instrumentation
Authors
, , ,