Article ID Journal Published Year Pages File Type
5494275 Nuclear Physics B 2017 19 Pages PDF
Abstract
We carry out the Kerr/CFT correspondence in a four-dimensional extremal rotating regular black hole with a non-linear magnetic monopole (NLMM). One problem in this study would be whether our geometry can be a solution or not. We search for the way making our rotating geometry into a solution based on the fact that the Schwarzschild regular geometry can be a solution. However, in the attempt to extend the Schwarzschild case that we can naturally consider, it turns out that it is impossible to construct a model in which our geometry can be a exact solution. We manage this problem by making use of the fact that our geometry can be a solution approximately in the whole space-time except for the black hole's core region. As a next problem, it turns out that the equation to obtain the horizon radii is given by a fifth-order equation due to the regularization effect. We overcome this problem by treating the regularization effect perturbatively. As a result, we can obtain the near-horizon extremal Kerr (NHEK) geometry with the correction of the regularization effect. Once obtaining the NHEK geometry, we can obtain the central charge and the Frolov-Thorne temperature in the dual CFT. Using these, we compute its entropy through the Cardy formula, which agrees with the one computed from the Bekenstein-Hawking entropy.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,