Article ID Journal Published Year Pages File Type
5494287 Nuclear Physics B 2017 27 Pages PDF
Abstract
The Wilson-Fisher fixed point with O(N) universality in three dimensions is studied using the renormalisation group. It is shown how a combination of analytical and numerical techniques determine global fixed points to leading order in the derivative expansion for real or purely imaginary fields with moderate numerical effort. Universal and non-universal quantities such as scaling exponents and mass ratios are computed, for all N, together with local fixed point coordinates, radii of convergence, and parameters which control the asymptotic behaviour of the effective action. We also explain when and why finite-N results do not converge pointwise towards the exact infinite-N limit. In the regime of purely imaginary fields, a new link between singularities of fixed point effective actions and singularities of their counterparts by Polchinski are established. Implications for other theories are indicated.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,