Article ID Journal Published Year Pages File Type
5494555 Nuclear Physics B 2016 17 Pages PDF
Abstract
In this paper we analyze the interactions of massive spin-2 particles charged under both Abelian and non-Abelian group using the Porrati-Rahman Lagrangian. This theory is valid up to an intrinsic cutoff scale. Phenomenologically a theory valid up to a cutoff scale is sensible as all known higher spin particles are non-fundamental and it is shown that indeed this action can be used to estimate some relevant cross section. Such action necessarily includes Stückelberg field and therefore it is necessary to fix the corresponding gauge symmetry. We show that this theory, when the Stückelberg symmetry is gauge-fixed, possesses a non-trivial infrared problem. A gauge fixing ambiguity arises which is akin to the Gribov problem in QCD in the Abelian case as well. In some cases (such as when the space-time is the four-dimensional torus) the vacuum copies can be found analytically. A similar phenomenon also appears in the case of Proca fields. A very interesting feature of these copies is that they arise only for “large enough” gauge potentials. This opens the possibility to avoid the appearance of such gauge fixing ambiguities by using a Gribov-Zwanziger like approach.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, , ,