Article ID Journal Published Year Pages File Type
5494848 Physics Letters B 2017 5 Pages PDF
Abstract
The experimental determination of the total excitation energy, the total kinetic energy, and the evaporation neutron multiplicity of fully identified fragments produced in transfer-induced fission of 240Pu, combined with reasonable assumptions, permits to extract the intrinsic and collective excitation energy of the fragments as a function of their atomic number, along with their quadrupole deformation and their distance at scission. The results show that the deformation increases with the atomic number, Z, except for a local maximum around Z=44 and a minimum around Z=50, associated with the effect of deformed shells at Z∼44, N∼64, and spherical shells in 132Sn, respectively. The distance between the fragments also shows a minimum around Z1=44, Z2=50, suggesting a mechanism that links the effect of structure with the length of the neck at scission.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Nuclear and High Energy Physics
Authors
, ,