Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5494882 | Physics Letters B | 2017 | 7 Pages |
Abstract
We evaluate the impact of domain-wall annihilation on the currently ongoing and planned gravitational wave experiments, including a case in which domain walls experience a frictional force due to interactions with the ambient plasma. We show the sensitivity reach in terms of physical parameters, namely, the wall tension and the annihilation temperature. We find that a Higgs portal scalar, which stabilizes the Higgs potential at high energy scales, can form domain walls whose annihilation produces a large amount of gravitational waves within the reach of the advanced LIGO experiment (O5). Domain wall annihilation can also generate baryon asymmetry if the scalar is coupled to either SU(2)L gauge fields or the (BâL) current. This is a variant of spontaneous baryogenesis, but it naturally avoids the isocurvature constraint due to the scaling behavior of the domain-wall evolution. We delineate the parameter space where the domain-wall baryogenesis works successfully and discuss its implications for the gravitational wave experiments.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Nuclear and High Energy Physics
Authors
Kazunori Nakayama, Fuminobu Takahashi, Norimi Yokozaki,