Article ID Journal Published Year Pages File Type
5496157 Physics Letters A 2017 13 Pages PDF
Abstract
Using non-equilibrium Green's functions' theory based on extended Nambu representation and small polaron transformation, we studied the current-induced heat generation in a spin-flip quantum dot sandwiched between a ferromagnetic and a superconducting electrode. We focused on moderate dot-leads coupling and relative small phonon energy, and derived the detailed expression of heat generation. The numerical results show (i) the heat generation decreases with polarization degree increasing, (ii) the intradot spin-flip can have a great effect on the heat generation at both zero temperature and finite temperature and (iii) at finite temperature an optimal workspace of keeping spin current and tuning heat generation by modulating the spin-flip intensity can be found.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , , ,