Article ID Journal Published Year Pages File Type
5496870 Physics Letters A 2017 20 Pages PDF
Abstract
Applications of variational methods are typically restricted to conservative systems. Some extensions to dissipative systems have been reported too but require ad hoc techniques such as the artificial doubling of the dynamical variables. Here, a different approach is proposed. We show that, for a broad class of dissipative systems of practical interest, variational principles can be formulated using constant Lagrange multipliers and Lagrangians nonlocal in time, which allow treating reversible and irreversible dynamics on the same footing. A general variational theory of linear dispersion is formulated as an example. In particular, we present a variational formulation for linear geometrical optics in a general dissipative medium, which is allowed to be nonstationary, inhomogeneous, anisotropic, and exhibit both temporal and spatial dispersion simultaneously.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Physics and Astronomy (General)
Authors
, , ,