Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5496957 | Physics Letters A | 2017 | 6 Pages |
Abstract
R-dependent high-order harmonic spectra (R is the nuclear distance) from H2+ have been investigated through solving the Non-Bohn-Oppenheimer time-dependent Schrödinger equation. We found that (i) for the case of the few-cycle pulse, the harmonic emission mainly occurs from R=3.7 to R=6, caused by the charge-resonance-enhanced-ionization (CREI) process. (ii) For the case of the multi-cycle pulse, the harmonic emission can be separated into two parts, that is the charge-resonance-enhanced-ionization region from R=3.7 to R=8; and the dissociative ionization region when R>10. (iii) Isotopic investigation showed that the R-dependent harmonic emission process can be moved towards the smaller-R region as the masses of the nuclei are increased (D2+ and T2+). (iv) Multi-minima on the harmonic spectra can be obtained, which is attributed to the two-center interference and the electron-nuclear coupling during the generation of the harmonics. The R-dependent ionization probabilities, the time-dependent nuclear motions and the time-frequency analyses of the harmonic spectra have been shown to explain the R-dependent molecular harmonic emission process.
Keywords
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
Liqiang Feng, Hang Liu,