Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
5497362 | Physics Procedia | 2016 | 8 Pages |
Abstract
As Direct Diode Lasers are introduced as an emerging technology for laser cutting of metal sheets, new challenges arise. The relatively low beam quality remains a limitation to the maximum cutting speed. One way to balance this may be a strategic use of laser polarization in order to influence laser material interaction in the cutting kerf. In this paper the effects of cross-, linear-, radial- and azimuthal- laser beam polarization arrangements are studied with both Fusion and Flame cutting at an output power of approximately 750W. Different combinations of materials and thicknesses were cut and the maximum cutting speed and edge quality analyzed. It is found that at similar cutting edge quality, improvements in cutting speed can go up to 40% with an inert gas, such as Nitrogen, and up to 20% with a reactive gas, such as Oxygen, in agreement with analytical models for absorption previously developed by the authors.
Related Topics
Physical Sciences and Engineering
Physics and Astronomy
Physics and Astronomy (General)
Authors
G. Costa Rodrigues, J.R. Duflou,