Article ID Journal Published Year Pages File Type
5497586 Applied Radiation and Isotopes 2017 22 Pages PDF
Abstract
The radionuclide zirconium-89 can be employed for the positron emission tomography (PET). In this study 89Zr excitation function via 89Y(p,n)89Zr reaction was calculated by the TALYS-1.8 code based on microscopic level density model. The formation of 89Zr was simulated using the Monte Carlo simulation code MCNPX to calculate the integral yield in the 89Y target body for threshold up to 40 MeV incident-proton energy. The target thickness was based on calculation of the stopping power using the SRIM-2013 code matched to any incident-proton energy. The production yield of the 89Zr simulated with the Monte Carlo method for the 89Y(p,n)89Zr, 89Y(d,2n)89Zr, natSr(α,xn)89Zr and natZr(p,pxn)89Zr reactions and the results were in good agreement with published experimental results for the optimum energy range. An experimental yield of 53.1 MB/µA for the 15 MeV proton-induced on Y2O3 powder as a disk-target obtained for 1 h irradiation at the AMIRS cyclotron.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Radiation
Authors
, , , , ,