Article ID Journal Published Year Pages File Type
5499702 Chaos, Solitons & Fractals 2017 5 Pages PDF
Abstract
This paper derives the stochastic solution of a Cauchy problem for the distribution of a fractional diffusion process. The governing equation involves the Bessel-Riesz derivative (in space) to model heavy tails of the distribution, and the Caputo-Djrbashian derivative (in time) to depicts the memory of the diffusion process. The solution is obtained as Brownian motion with time change in terms of the Bessel-Riesz subordinator on the inverse stable subordinator. This stochastic solution, named fractional Bessel-Riesz motion, provides a method to simulate a large class of stochastic motions with memory and heavy tails.
Related Topics
Physical Sciences and Engineering Physics and Astronomy Statistical and Nonlinear Physics
Authors
, , ,