Article ID Journal Published Year Pages File Type
5499927 Journal of Geometry and Physics 2017 13 Pages PDF
Abstract
We analyze a U(2)-matrix model derived from a finite spectral triple. By applying the BV formalism, we find a general solution to the classical master equation. To describe the BV formalism in the context of noncommutative geometry, we define two finite spectral triples: the BV spectral triple and the BV auxiliary spectral triple. These are constructed from the gauge fields, ghost fields and anti-fields that enter the BV construction. We show that their fermionic actions add up precisely to the BV action. This approach allows for a geometric description of the ghost fields and their properties in terms of the BV spectral triple.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
, ,