Article ID Journal Published Year Pages File Type
5500360 Physica D: Nonlinear Phenomena 2017 32 Pages PDF
Abstract
The problem of constructing data-based, predictive, reduced models for the Kuramoto-Sivashinsky equation is considered, under circumstances where one has observation data only for a small subset of the dynamical variables. Accurate prediction is achieved by developing a discrete-time stochastic reduced system, based on a NARMAX (Nonlinear Autoregressive Moving Average with eXogenous input) representation. The practical issue, with the NARMAX representation as with any other, is to identify an efficient structure, i.e., one with a small number of terms and coefficients. This is accomplished here by estimating coefficients for an approximate inertial form. The broader significance of the results is discussed.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,