Article ID Journal Published Year Pages File Type
5500452 Wave Motion 2017 31 Pages PDF
Abstract
We derive a volumetric source term for the Euler and Navier-Stokes equations that mimics the generation of unidirectional acoustic waves from an arbitrary smooth surface in three-dimensional space. The model is constructed as a linear combination of monopole and dipole sources in the mass, momentum, and energy equations. The singular source distribution on the surface is regularized on a computational grid by convolution with a smeared Dirac delta function. The source is implemented in the Euler equation using a Cartesian-grid finite-volume WENO scheme, and validated by comparing with analytical solution for unidirectional planar and spherical acoustic waves. Using the scheme, we emulate a spherical piezoelectric transducer and a multi-element array medical transducer to simulate focused ultrasound fields in water. The simulated ultrasound fields show favorable agreement with previous experiments.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,