Article ID Journal Published Year Pages File Type
5500548 Wave Motion 2017 12 Pages PDF
Abstract
When a drop of insoluble surfactant is deposited on the surface of a thin liquid film, a radial flow is induced by the resulting surface tension gradient. It is difficult in practice to measure or visualize the evolution of the surfactant concentration and the corresponding surface tension field. In this contribution, we propose a numerical technique which allows, in theory, the reconstruction of the surfactant concentration and surface tension fields from the knowledge of the free surface velocity. The method also requires the knowledge of the equation of state relating the surfactant concentration to the surface tension. The proposed method is based on a reformulation of the lubrication approximation which then takes as an input the free surface velocity field. As a by-product, the film thickness is also reconstructed. We also show in this contribution, that the surface diffusion coefficient can also be estimated, in principle. The methodologies are successfully tested on ideal, synthetic data-sets but also on under-resolved, noisy, data-sets more representative of true experimental conditions. This contribution may help shed some light on the phenomena involved in surfactant transport.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,