Article ID Journal Published Year Pages File Type
5500987 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017 30 Pages PDF
Abstract
Febrile seizures (FS) are convulsions associated with high body temperature. It has a high incidence in children from the age of 6 months to 5 years and may have adverse consequences in adulthood. The experimental model of FS could be induced in animals via hyperthermia. The present study was designed to investigate persistent electroencephalographic (EEG), neurochemical and behavioral alterations in adult animals that had experienced complex FS at their immature age. EEG signals were obtained from the cortex of both FS and control normothermic groups of animals. A spectrophotometric assay was carried out to determine oxidative stress parameters (malondialdehyde, nitric oxide, reduced glutathione) and acetylcholinesterase activity in the cortex and hippocampus of FS and control animals. Behavioral assessment of seizure threshold and severity were investigated via a sub-convulsive dose of nicotine in adult animals. Alterations in the oxidant/antioxidant system and AChE activity were obtained in the cortex and hippocampus of FS animals in comparison to control animals. EEG spectral analysis displayed significant changes in all EEG frequency bands. A decrease in seizure latency and an increase in seizure severity were also observed. The present study provides evidence for long-lasting abnormalities in the cortex and hippocampus of adult animals subjected to complex FS at their developmental age, which may be correlated to the underlying mechanism of epileptogenesis and its related co-morbidities.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , ,