Article ID Journal Published Year Pages File Type
5501034 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2017 41 Pages PDF
Abstract
Obesity is often accompanied by decreases in the proportion of skeletal muscle slow-twitch fibers and insulin sensitivity. Increased plasma non-esterified fatty acids (NEFA) levels are responsible for obesity-associated insulin resistance. Palmitate, one of the most elevated plasma NEFA in obesity, has been recognized as the principle inducer of insulin resistance. The present study showed that increased plasma NEFA levels were negatively linked to slow-twitch fiber proportion and insulin sensitivity, while slow-twitch fiber proportion was positively correlated to insulin sensitivity in high fat diet (HFD)-fed and ob/ob mice. Dihydromyricetin (DHM) intervention increased slow-twitch fiber proportion and improved insulin resistance. In cultured C2C12 myotubes, palmitate treatment resulted in decrease of slow-twitch fiber specific Myh7 expression and insulin resistance, concomitant with folliculin (FLCN) and folliculin-interacting protein 1 (FNIP1) expression increase, AMP-activated protein kinase (AMPK) inactivation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression decrease. Those palmitate-induced effects could be blocked by knock-down of FLCN expression or DHM intervention. Meanwhile, the protective effects of DHM were alleviated by over-expression of FLCN. In addition, the changes in AMPK activity and expression of FLCN and FNIP1 in vivo were consistent with those occurring in vitro. These findings suggest that DHM treatment prevents palmitate-induced slow-twitch fibers decrease partially via FLCN-FNIP1-AMPK pathway thereby improving insulin resistance in obesity.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , , , ,