Article ID Journal Published Year Pages File Type
5501650 Free Radical Biology and Medicine 2017 9 Pages PDF
Abstract

•HNE levels are increased in brain and body fluids of AD, PD, HD and ALS pathology.•Increased HNE levels promote brain damage thus worsening cognitive/motor functions.•HNE-modified proteins may be good therapeutic targets for these diseases.

Oxidative stress is involved in various and numerous pathological states including several age-related neurodegenerative diseases. Peroxidation of the membrane lipid bilayer is one of the major sources of free radical-mediated injury that directly damages neurons causing increased membrane rigidity, decreased activity of membrane-bound enzymes, impairment of membrane receptors and altered membrane permeability and eventual cell death. Moreover, the peroxidation of polyunsaturated fatty acids leads to the formation of aldehydes, which can act as toxic by-products. One of the most abundant and cytotoxic lipid -derived aldehydes is 4-hydroxy 2-nonenal (HNE). HNE toxicity is mainly due to the alterations of cell functions by the formation of covalent adducts of HNE with proteins. A key marker of lipid peroxidation, HNE-protein adducts, were found to be elevated in brain tissues and body fluids of Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis subjects and/or models of the respective age-related neurodegenerative diseases. Although only a few proteins were identified as common targets of HNE modification across all these listed disorders, a high overlap of these proteins occurs concerning the alteration of common pathways, such as glucose metabolism or mitochondrial function that are known to contribute to cognitive decline. Within this context, despite the different etiological and pathological mechanisms that lead to the onset of different neurodegenerative diseases, the formation of HNE-protein adducts might represent the shared leit-motif, which aggravates brain damage contributing to disease specific clinical presentation and decline in cognitive performance observed in each case.

Graphical abstractHNE-protein adducts were found to be elevated in brain tissues and body fluids of AD, PD, HD and ALS subjects and/or models of these diseases. This pathogenic event represents a sharedleitmotif, which contributes to brain damage and loss of cognitive performance.Download high-res image (207KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , ,