Article ID Journal Published Year Pages File Type
5501866 Free Radical Biology and Medicine 2016 29 Pages PDF
Abstract
Acetaminophen (APAP) overdose accounts for the majority of acute liver failure cases, and oxidative stress plays a key role in its toxic effects. Esculentoside A (EsA) has anti-oxidant activities, but its therapeutic potential for APAP hepatotoxicity remains unknown. This study aimed to assess the protective effects and mechanism of EsA against APAP-induced hepatotoxicity in vitro and in vivo. In vitro, EsA treatment inhibited APAP- or H2O2-induced cytotoxicity, H2O2 and O2- production, glutathione (GSH) depletion and apoptosis dependent on nuclear factor erythroid-2-related factor 2 (Nrf2) activation in HepG2 cells. Moreover, EsA significantly increased the phosphorylation of AMP-activated protein kinase (AMPK) and serine/threonine kinase (Akt), as well as glycogen synthase kinase 3 beta (GSK-3β) inhibitory phosphorylation at Ser9. Furthermore, an AMPK inhibitor (compound c) abolished the effects of EsA on AKT phosphorylation, GSK-3β inactivation, Nrf2 nuclear translocation and cytoprotection. With regard to APAP-induced acute liver injury, EsA attenuated the APAP-stimulated increases in the serum ALT and AST levels, as well as centrilobular necrosis and GSH depletion in the mice. In addition, it decreased the GSSG level, GSSG-to-GSH ratio, and the phosphorylation and mitochondrial translocation of c-Jun N-terminal kinase (JNK). Further, the protective potential of EsA against mitochondrial dysfunction was exhibited not only by inhibiting Bax mitochondrial translocation and the release of mitochondrial inter-membrane proteins, such as apoptosis-inducing factor (AIF), but also by activating Nrf2/HO-1. Collectively, our findings suggest that EsA has protective potential against APAP toxicity by potentiating the Nrf2-regulated survival mechanism through the AMPK/Akt/GSK3β pathway.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , ,