Article ID Journal Published Year Pages File Type
5517094 Biologicals 2017 6 Pages PDF
Abstract

In vitro cell-based models are important tools for assessing efficacies of new leads in early phases of drug development. Human osteoarthritic chondrocytes (OACs), obtained from biomedical waste material, represent a valuable, relatively accessible cellular source that could be used for this purpose. By employing reverse transcription-polymerase chain reaction (qRT-PCR) we compared gene expression profiles of key anabolic, catabolic and inflammatory genes of freshly isolated vs. monolayer cultured OACs (passages P0-P2) and non-stimulated vs. tumor necrosis factor alpha (TNF-α) stimulated P2 OACs. After expansion of OACs in monolayer cultures, the expression of almost all analyzed genes significantly decreased. The subsequent addition of TNF-α to OACs at P2 significantly increased expressions of all catabolic and inflammatory genes, leaving the anabolic profile almost unchanged. TNF-α-treated OACs were later utilized for efficacy testing of anti-TNF-α drugs infliximab and etanercept and both significantly reduced the expressions of all catabolic and inflammatory genes tested.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , ,