Article ID Journal Published Year Pages File Type
5517295 CMGH Cellular and Molecular Gastroenterology and Hepatology 2017 11 Pages PDF
Abstract

Background & AimsCholestasis promotes endoplasmic reticulum (ER) stress in the liver, however, the effect of ER stress on hepatic bile acid metabolism is unknown. We aim to determine the effect of ER stress on hepatic bile acid synthesis and transport in mice.MethodsER stress was induced pharmacologically in C57BL/6J mice and human hepatoma (HepG2) cells. The hepatic expression of genes controlling bile acid synthesis and transport was determined. To measure the activity of the primary bile acid synthetic pathway, the concentration of 7α-hydroxy-4-cholesten-3-1 was measured in plasma.ResultsInduction of ER stress in mice and HepG2 cells rapidly suppressed the hepatic expression of the primary bile acid synthetic enzyme, cholesterol 7α-hydroxylase. Plasma levels of 7α-hydroxy-4-cholesten-3-1 were reduced in mice subjected to ER stress, indicating impaired bile acid synthesis. Induction of ER stress in mice and HepG2 cells increased expression of the bile salt export pump (adenosine triphosphate binding cassette [Abc]b11) and a bile salt efflux pump (Abcc3). The observed regulation of Cyp7a1, Abcb11, and Abcc3 occurred in the absence of hepatic inflammatory cytokine activation and was not dependent on activation of hepatic small heterodimer partner or intestinal fibroblast growth factor 15. Consistent with suppressed bile acid synthesis and enhanced bile acid export from hepatocytes, prolonged ER stress decreased the hepatic bile acid content in mice.ConclusionsInduction of ER stress in mice suppresses bile acid synthesis and enhances bile acid removal from hepatocytes independently of established bile acid regulatory pathways. These data show a novel function of the ER stress response in regulating bile acid metabolism.

Graphical AbstractDownload high-res image (373KB)Download full-size image

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , ,