Article ID Journal Published Year Pages File Type
5518291 Marine Genomics 2016 5 Pages PDF
Abstract

For microorganisms, heat shock is a major stressful condition. Heat shock is characterized by sudden temperature increases that damage important protein structures and interfere with essential cellular functions. In this study, global gene expression patterns of the deep-sea bacterium Shewanella piezotolerans WP3 in response to heat shock were studied by DNA microarray analysis. Overall, 438, 573, and 627 genes were found to be differentially expressed after heat shock for 30, 60, and 90 min, respectively. Functional classification of differentially transcribed genes was performed using the Clusters of Orthologous Groups of Proteins database. Additionally, 361 genes were identified as common differentially expressed genes. These genes may comprise the core genes responsible for coping with heat shock stress of WP3. Moreover, comparative analysis of gene expression pattern in WP3 and other bacteria indicated the presence of different adaptive strategies. These data represent the first transcriptome resource for the response of this deep-sea bacterium to high-temperature stress. This study contributes to the understanding of the global adaptation mechanisms of benthic bacteria toward environmental stresses.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , ,