Article ID Journal Published Year Pages File Type
5520659 Biosystems 2017 10 Pages PDF
Abstract

Sensitivity analysis characterizes the dependence of a model's behaviour on system parameters. It is a critical tool in the formulation, characterization, and verification of models of biochemical reaction networks, for which confident estimates of parameter values are often lacking. In this paper, we propose a novel method for sensitivity analysis of discrete stochastic models of biochemical reaction systems whose dynamics occur over a range of timescales. This method combines finite-difference approximations and adaptive tau-leaping strategies to efficiently estimate parametric sensitivities for stiff stochastic biochemical kinetics models, with negligible loss in accuracy compared with previously published approaches. We analyze several models of interest to illustrate the advantages of our method.

Related Topics
Physical Sciences and Engineering Mathematics Modelling and Simulation
Authors
, , ,